LQ search in e□jj channel

Simona Rolli (TUFTS)

-Pre Blessing-

Introduction

- This analysis is an update of the result produced in June 2003
- REMAKE data 4.11.1 up to Summer shutdown used 203 pb⁻¹
- New treatment of efficiencies
 - ID efficiencies used in MC and scaled to data
- New good run list
- Revised final selection cut
 - New MET cut raised at 35 GeV
 - New cut around the nominal LQ mass

LQ production at the TeVatron

- Production
 - qg ☐ LQ + LQbar
 - gg [] LQ + LQbar
 - qqbar [] LQ + LQbar

LQLQ □ I+I-qq, I±□qq, □□qq

 $\Box = Br(LQ->eq)$

- Experimental signature:
 - High pt isolated leptons (and/or MET) + jets

In this analysis: $e \square + 2$ jets

LQ production at TeVatron

NLO cross-section (Phys.Rev.Lett 79,1997)

M_{LQ} (\square (NLO) [pb]
GeV/c^2)	
200	0.265E+00
220	0.139E+00
240	0.749E-01
260	0.412E-01
280	0.229E-01
300	0.129E-01
320	0.727E-02

$$s = 1960 \text{ GeV}$$

 $Q^2 = M_{LQ}^2$
CTEQ4M pdf

7/8/04

Simona Rolli Exotic meeting

Previous results

- CdfNote 6436 June 2003
 - $M(LQ) > 166 \text{ GeV/c}^2$
 - No Mass Cut but MetSig cut
- Cdfnote 4228 July 1997
 - $m(LQ) > 180 \text{ GeV/c}^2$
 - straightforward strategy
 - cut on transverse mass to get rid of W + 2 jets background
- Cdfnote 4873 June 2001
 - $m(LQ) > 182 \text{ GeV/c}^2$
 - relative likelihood technique

LQ search in e□jj

Signature: 1 electron, 2 jets and large MET

Analysis cuts

- 1central electrons with E_T > 25 GeV
- MET > 60 GeV
- Veto on 2nd electron, central loose or Plug
- 2 jets with E_T > 30 GeV
- $E_T(j1) + E_T(j2) > 80 \text{ GeV}$
- $M_T(e-\square) > 120$
- LQ mass combinations

Events with 2 central/plug electrons are rejected (to be orthogonal to eejj analysis)

New MET cut

The Missing Et cut has been raised to 60 GeV Background reduced by a factor ≥2 (top, W + 2 jets) Signal stays the same

M(LQ)	140	200	280
$E_{T} > 35$	0.08 ± 0.01	0.17 ± 0.01	0.26 ± 0.006
$E_{T} > 60$	0.07 ± 0.01	0.16 ± 0.01	0.25 ± 0.006

Top
2.5 3.08 2.9 2.6 2.3 1.8 1.5 1.0 0.7 0.6
4.0 5.0 5.2 4.8 4.2 3.6 3.2 2.2 1.6 1.2

1.5	5.5
1.5	9.5
1.5	9.9
2.5	10.5
2.5	10.
2.5	9.0
2.0	8.0
2.0	7.0

1.5

W+ 2 jets

Other Cuts Efficiency

We studied the effect of 5 cuts on signal $(m(LQ) = 200 \text{ GeV/c}^2)$ and W + 2 jets and Top (main background)

Analysis of the signal and background reduction by applying all but one cut (N-1)

,	Signal	W + 2jets	Top
P_T ele > 25	14.77	16200	113.8
MET > 60 GeV 2 jets with E_T > 30 GeV $\square\square$ (MET-jet) > 10° $E_T(j1) + E_T(j2) > 80$ GeV $M_T(e-\square) > 120$	6.5 7.8 6.2 5.9 7.1	22 20.5 5 3.5 64.5	7.8 6.2 5.3 5.0 22.06
After all cuts in sequence	5.8	3.0	4.82

Tools

- Signal generated and reprocessed with 4.9.1
 - 5000 events at masses from 100 to 280
 - run number 151435
 - full beam position

```
talk GenPrimVert
BeamlineFromDB set false
sigma_x set 0.0025
sigma_y set 0.0025
```

sigma_z set 28.0

pv_central_x set -0.064

pv_central_y set 0.310

pv_central_z set 2.5

pv_slope_dxdz set -0.00021

pv_slope_dydz set 0.00031

exit

- eN (4.9.1)used for ntuple analysis
 - http://ncdf70.fnal.gov:8001/talks/eN/eN.html

Efficiencies & acceptance

$$\Box_{tot} = \Box_{Acc}(M)x \Box^{data}_{ID} / \Box^{MC}_{ID} x \Box_{to}x \Box_{trig}$$

- Trigger
 - Top/EW as in Z` analysis we use 99.1±0.1%
- Efficiencies for electron selection cuts
 - Z' analysis : one tight electron $\Box_{+} = 94.5 \pm 0.2$
- Other
 - eff. on the vertex cut ($|z_0|$ < 60 cm)95.2 ± 0.1 (stat) ± 0.5 (sys)

 Events are selected where the electron satisfies the tight requirements of the exotic group. The analysis (kinematical) cuts are then applied.

Central electron tight

```
•E_t \ge 25 \text{ GeV}
•p_t > 15 \text{ GeV}
•hadem <= 0.055 + 0.00045 * E
•E/p < 4 \text{ (for } E_T < 100 \text{ GeV)}
```

- ■iso4e/emet < 0.1
- | DeltaX | < 3.0
- | DeltaZ | < 5.0 cm
- ■Fiducial = 1
- ■lshr < 0.2

HEPG electrons are then matched in a $\square R = (\square \square^2 - \square \square^2)$ cone to the reconstructed electron:

ID efficiencies are calculated on them scale factor to data is derived: □^{data}/□^{MC} the events surviving the final kinematical cuts are normalized to the number of matching electrons;

Acceptances - numbers

Cuts	Cdf 6746	W + 2 jets	m(LQ) = 200
Iso < 0.1	97.2 ±0.2	95.7 ±0.2	95.7 ±0.2
Had/EM	99.0 ±0.1	99.9 ±0.2	99.5 ±0.2
E/P	99.0 ±0.1	97.29 ±0.2	96.8 ±0.2
Dx	98.9 ±0.1	98.9 ±0.2	98.4 ±0.2
Dz	99.7 ±0.1	99.3 ±0.2	98.9 ±0.2
Ishr	98.7 ±0.1	98.6 ±0.2	98.9 ±0.2
G	94.5 ±0.2	89.9 ±0.2	88.1 ±0.2

Efficiency of the ID cuts for central electrons - individual cuts

MetSig Cut Removal

The E_T significance cut is not optimal:

large systematic associated due to mis-modeling of Sumet in MC Sumet is generally smaller in MC

"overefficiency" in MC: for the same MET, Metsig is smaller in data

Mass Cut is used instead of Missing Et significance

It was used in Run I

Signal efficiency acceptable (same as Metsig cut)
Powerful background constrain, better controlled as
function of LQ mass

BETTER LIMIT!

Mass Cut

The invariant mass of the electron-jet system and the transverse mass of the neutrino-jet system are selected where the jet assignment is made such that the difference between the electron-jet mass and the neutrino-jet transverse mass is minimized.

The peak of the *ej* histogram is fitted with a gaussian

rough estimate of the spread of the distribution in the signal region.

Several masses (120-160-200-240-280) tested:

$$\square_{\rm e} \sim 15\%$$
.

 3_{e} cut around the nominal mass to select LQ candidates of a given mass.

Mass Cut (continued)

The \Box -q transverse mass distribution is fitted including the high mass tail end, with a Gaussian to estimate the signal spread. $\Box\Box$ ~

25%.

Inefficiency at low end?
The region is more background populated...

 $3 \square_{\sqcap}$ cut applied around the nominal mass

Final Acceptances

Expected signal events

Mass	☐ Theory C	TEQ4M	(pb)
	$Q^2 = M^2/4$	$Q^2 = M^2$	$Q2 = 4M^2$
100	31	28	24.1
120	25	22.6	19.5
140	19.7	17.9	15.5
160	13.5	11.7	10.3
180	8.5	7.4	6.5
200	5.2	4.4	3.9
220	3.2	2.7	2.4
240	1.65	1.6	1.4
260	1.11	0.94	0.8
280	0.7	0.6	0.5

Number of expected events in 203 pb⁻¹

Backgrounds

Main background sources:

W + 2 jets

Z + 2 jets w/ mismeasured electron

Top

 $W(\square \square) + 2 \text{ jets - negligible}$

QCD fakes - from data iso vs MET negligible

QCD background

Iso vs MET has been employed 2 sets of cuts

	М		±0,	4 3 4 2 0	1649 1359 0	1712 1382 5	35.8 21.7 2.03 nan
	1.1.	T	/	0	0	0	nan
	Α	В	C	D	Bgk		
epton	1073	11	1786	3 71321	43.9		
MET60	124	2	578	1485	5.3	$\Box\Box$	cut
2 jets	104	2	474	1204	5.08		
	18	0	0	1	nan	rem	oves it?
٧Ļ	7	0	0	0	nan		

Negligible in first approximation

Check: relax the □□
Relax the ele E_t requirement

Bgk

Data sample

- btop0g (inclusive electrons) stripped from bhel08 and (4.8.4 Production)
- Inclusive-ele_4.11.1_REMAKE
- events selected from Ele_18 && Ele_70 triggers
- good runs from March 2002 to September 2003 (141544 168889)
 - Good run list from DQM page, em_noSi version 4
 - Removed 4 runs due to CSL problem
 - Luminosity = $199.7 * 1.019 = 203.5 \pm 12.2$
 - http://www-cdf.fnal.gov/internal/dqm/goodrun/v4/goodv4.html

W cross section

 $E_{T} > 25 \text{ GeV}$

Relaxing the MET cut to 25 GeV we obtain 112384 candidate W events

We use the same numbers used CDF6681 (the background is scaled to the increased Luminosity):

$$\sigma \cdot B(p\bar{p} \to W \to e\nu) = \frac{N_W - N_{BG}}{A_W \cdot \epsilon(Z_{vtx} < 60) \cdot \epsilon_c \cdot \epsilon_T \cdot R_{COT} \cdot R_{EMC} \cdot \int \mathcal{L}dt}$$

$$N_{BG} = 1656 \pm 52(stat) \pm 295(syst)$$
 $A_W = (23.895 \pm 0.03(stat)^{+0.34}_{-0.39}(syst))\%$
 $\epsilon(Z_{vtx} < 60) = (95.0 \pm 0.2(stat) \pm 0.3(syst))\%$
 $\epsilon_c = (81.8 \pm 0.8(stat) \pm 0.2(syst))\%$
 $\epsilon_T = (96.6 \pm 0.1(stat))\%$
 $R_{COT} = (100.0 \pm 0.4)\%$

$$N_W = 112384$$

 $N_{BG} = 1656 * 203/72$
 $\Box t dt = 203$

$$\square = 2.953 \pm 0.032_{\text{stat}} \pm 0.051_{\text{sys}} \pm 0.177_{\text{lumi}} \text{ nb}$$

 $R_{EMC} = (99.8 \pm 0.4)\%$

W cross section (cont'd)

We checked that we would get the Same acceptance using W MC: wewk9e (official EW group)

$$Acc = 0.213592 \pm 0.0013 \square 94.5/89.8 = 22.4 \pm 0.002$$

Our electron cuts are different: E/P in particular is relaxed Running w/ E/P tightened gives 107385 evts observed

$$\square = 2.816 \pm 0.31_{\text{stat}} \pm 0.049_{\text{sys}} \pm 0.168_{\text{lumi}} \text{ nb}$$

W + 2 jets cross check

 $E_T > 35 \text{ GeV}$

We checked the number of events we would expect after the 2 jets cut:

QCD background (corrected for sideband contributions) 38.5 \pm 6 Top contribution 56 \pm 8

Z + 2 jets contribution \sim 25 ± 3

 $W \square \square$ contribution 16.6 ± 2.6

 136.5 ± 20.4

The number of expected W + 2 jets is

 366 ± 17

We observe 536 events

W + 2 jets cross check

Mass Cut (cont'd)

events with 1 ele > 25 && MET > 60	1073
events with 1 ele, MET and >= 2 jets (30 30)	125
events with 1 ele, MET and >= 2 jets and dphi cut	104
events with 1 ele, MET and >= 2 jets and dphi cut and 2jet_80	95
events with 1 ele, MET and >= 2 jets and dphi cut and 2jet_80 and T mass cut	18

Mass	100	120	140	160	180	200	220	240	260	280
W+2 jets	1.5±0.9	1.5±0.9	1.5±0.9	2.5±1.13	2.5±1.13	2.5±1.13	2.0±1.0	2.0±1.0	1.5±0.8	0.5±0.4
top	2.5 ±0.6	3.08 ±0.6	2.9 ±0.6	2.6 ±0.6	2.3 ±0.5	1.8 ±0.5	1.5 ±0.3	1.0 ±0.3	0.7 ±0.2	0.6 ±0.2
Z+jets	0.05 ±0.01	0.05±0.01	0.08±0.02	0.08±0.02	0.08±0.02	0.08±0.02	0.06±0.02	0.06±0.02	0.04±0.01	0.04±0.01
Total	4.2±3.8	4.65 ±4.3	4.5 ±4.0	5.16 ±4.3	4.85 ±4.0	4.47 ±3.8	3.6 ±3.2	3.1 ±2.8	2.3 ±2.1	1.1 ±1.1
Data	7	7	6	6	4	4	4	2	2	1

Systematic uncertainties

- Luminosity: 6%
- Acceptance
 - pdf 4.3% (from run I) working on getting the new one
 - statistical error of MC 1.4%
 - jet energy scale (Level 3)
 - jets corrected for energy scale, time dependent and relative response
 - jet energy scaled of systematic uncertainty + 5% (energy scale + 5% data/MC adjustment); 0.4 to 1.0% from mass 100 to 280) 0.6% at 200 GeV/c²
- Event vertex cut: 0.5%
- ISR/FSR under investigation

Final acceptances and relative errors

Mass	A(LQ)	Stat	Sys
100	0.017	0.0019	0.001
120	0.038	0.002	0.002
140	0.073	0.004	0.005
160	0.107	0.004	0.008
180	0.139	0.005	0.010
200	0.165	0.005	0.012
220	0.195	0.005	0.014
240	0.210	0.006	0.015
260	0.226	0.006	0.168
280	0.249	0.006	0.018

Relative uncertainty Inflated of ~10%

Cross section Limit

Conclusions

- A revision of the search for first generation LQ pair decaying into e

 qq has been performed
 - New data sample 203 pb-1
 - New final selection cut
 - Revised backgrounds
 - Cross check with W and W + 2 jets cross section
 - limit 178 GeV/c²

Comparison with previous method (HEPG matching ele and ID from data)

	Kinematical eff	ID	Final
HEPG matching	0.173 ±0.005	0.945	0.163 ±0.005
MC ID	0.166±0.005	0.945/0.881	0.178 ±0.005

Acceptance w/ MetSig

